THE ENDOCANNABINOID SYSTEM 2017-05-04T19:32:26+00:00



  • The endocannabinoid system (ECS) is a regulatory body system that consists of cannabinoid molecules synthesized internally and called endocannabinoids, and their target receptors – called cannabinoid receptors (CB) proteins. See Graphic.
  • Endocannabinoids – Anandamide and 2-Arachidonoylglycerol (2-AG) are endogenous molecules that were discovered in the 1990’s. Endocannabinoids are produced and released on demand, during heightened levels of stress on the brain or the body. Endocannabinoids are lipid soluble and are not stored in vesicles, like traditional neurotransmitters. When endocannabinoids are released in the brain, they travel in a retrograde way (from post-synaptic to pre-synaptic side) and target cannabinoid receptors.

Synthesis and degradation of AEA and 2-AG

  • Cannabinoid receptors are divided into two subtypes: CB1 and CB2.
  • Agonist – compounds activate receptors
  • CB1 receptors are predominantly expressed in the brain. They can also be found in the heart and the digestive system. 2-AG has higher affinity to CB1 receptors. CB1 receptors ae the most abundant G-protein coupled receptor in the brain.
  • CB2 receptors are mostly found in the peripheral body organs and cells that contribute to the normal function of the immune system, such as spleen, and pancreas. Recently CB2 receptors were also found in the brain, but to a lesser extent than CB1.
    • Full agonist is more potent than partial
    • Affinity – potency of compound binding
    • High affinity receptors require lower concentrations of ligands
  • Endocannabinoid deficiencies are thought to be disorders that stem from the lack of proper ECS functions. These disorders are usually hyperalgesia: Migraines, fibromyalgia, irritable bowel syndrome, neurotransmitter disorders, and epilepsies (Dr. Ethan Russo).


Kendall, D. A. & Yudowski, G. A. Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease. Front Cell Neurosci 10, 294, doi:10.3389/fncel.2016.00294 (2016).

McCoy, K. L. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016, 5831315, doi:10.1155/2016/5831315 (2016).

Prospero-Garcia, O., Amancio-Belmont, O., Becerril Melendez, A. L., Ruiz-Contreras, A. E. & Mendez-Diaz, M. Endocannabinoids and sleep. Neurosci Biobehav Rev 71, 671-679, doi:10.1016/j.neubiorev.2016.10.005 (2016).

Turcotte, C., Blanchet, M. R., Laviolette, M. & Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 73, 4449-4470, doi:10.1007/s00018-016-2300-4 (2016).

Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61-65, doi:10.1038/365061a0 (1993).

Breivogel, C. S., Griffin, G., Di Marzo, V. & Martin, B. R. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60, 155-163 (2001).

Steffens, M., Engler, C., Zentner, J. & Feuerstein, T. J. Cannabinoid CB1 receptor-mediated modulation of evoked dopamine release and of adenylyl cyclase activity in the human neocortex. Br J Pharmacol 141, 1193-1203, doi:10.1038/sj.bjp.0705706 (2004).

Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14, 923-930, doi:10.1038/nm.f.1869 (2008).

Ludanyi, A. et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J Neurosci 28, 2976-2990, doi:10.1523/JNEUROSCI.4465-07.2008 (2008).

Burstein, S. H. & Zurier, R. B. Cannabinoids, endocannabinoids, and related analogs in inflammation. AAPS J 11, 109-119, doi:10.1208/s12248-009-9084-5 (2009).

Hanus, L. O. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 29, 213-271, doi:10.1002/med.20135 (2009).

Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89, 309-380, doi:10.1152/physrev.00019.2008 (2009).

Di Marzo, V. & De Petrocellis, L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 17, 1430-1449 (2010).

Lee, S. H., Foldy, C. & Soltesz, I. Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J Neurosci 30, 7993-8000, doi:10.1523/JNEUROSCI.6238-09.2010 (2010).

Mechoulam, R. & Parker, L. A. The endocannabinoid system and the brain. Annu Rev Psychol 64, 21-47, doi:10.1146/annurev-psych-113011-143739 (2013).

Cathel, A. M. et al. Cannabinoid modulation of alpha2 adrenergic receptor function in rodent medial prefrontal cortex. Eur J Neurosci 40, 3202-3214, doi:10.1111/ejn.12690 (2014).

Mechoulam, R., Hanus, L. O., Pertwee, R. & Howlett, A. C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15, 757-764, doi:10.1038/nrn3811 (2014).

Navarrete, M., Diez, A. & Araque, A. Astrocytes in endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 369, 20130599, doi:10.1098/rstb.2013.0599 (2014).

Okura, D. et al. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg 118, 554-562, doi:10.1213/ANE.0000000000000070 (2014).

Oz, M., Al Kury, L., Keun-Hang, S. Y., Mahgoub, M. & Galadari, S. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. Eur J Pharmacol 731, 100-105, doi:10.1016/j.ejphar.2014.03.010 (2014).

Androvicova, R., Horacek, J., Stark, T., Drago, F. & Micale, V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol Res 115, 200-208, doi:10.1016/j.phrs.2016.11.021 (2017).

Dow-Edwards, D. & Silva, L. Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior. Brain Res 1654, 157-164, doi:10.1016/j.brainres.2016.08.037 (2017).

All content (C) 2017, Canntelligence.